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Relative stabilities are calculated with the density-functional based tight-binding method for all isomers C36H2x

(x = 1, 2, 3) based on the two C36 classical fullerenes with minimal pentagon adjacencies. Preferential addition at
pentagon junctions leads to low-energy candidates for C36H4 and C36H6 based on the sixfold-symmetric cylindrical
C36 fullerene cage, 36 : 15.

1 Introduction
The possibility of stable fullerene forms of carbon with fewer
than 60 atoms per molecular unit has been the subject of some
debate since the initial experiments by Piskoti et al.1 on a C36

solid. The identification of the unit in this material as a particu-
lar C36 fullerene monomer, the cylindrical D6h cage with 12
pentagon adjacencies (isomer 36 : 15 2), was based on evidence
from mass spectra, electron microscopy and a solid-state 13C
NMR spectrum. A band gap was later measured for thin films
deposited on gold substrates, using STS.3 The evidence has
some ambiguities: the mass spectrum shows a peak at C36H6

rather than C36, the diffraction pattern and ~ 0.8 eV band gaps
are compatible with several possible solids, and the NMR
spectrum lacks the sp3 peaks expected for a covalently bound
polymeric solid,4 but the initial experiments have stimulated
a number of parallel theoretical and experimental investi-
gations.

C36 has 15 conceivable classical (pentagon � hexagon) fuller-
ene isomers;2 different theoretical approaches are agreed in pre-
dicting lowest energy for the two with fewest pentagon adjacen-
cies (36 : 14 and 36 : 15), though the separation between these
near-isoenergetic isomers is sensitive to the method of calcu-
lation. The nominally D6h-symmetric isomer 36 : 15 is predicted
to be subject to Jahn–Teller distortion 4 and to have strongly
radicaloid character,5 leading to a large dimerisation energy
and a propensity to form polymeric solids. Ions of C36,

6,7 less
stable alternative cages with squares or heptagonal rings,4,8–10

and a number of hypothetical network solids based on C36

units 4,9,11–15 have also been studied.
The radicaloid character of 36 : 15 is also consistent with

predictions of a facile addition chemistry. Particular reactivity
of 1,4 sites in equatorial hexagons suggests a stable D3h C36X6

pattern,4,16 and Ito et al.17 have predicted energetics of a selec-
tion of candidate structures for C36H2, C36H4, and C36H6 based
on 1,4 addition to the 36 : 15 cage. Recently, Koshio et al.,18,19

have reported a new synthesis of C36-related species: (C36H4,
C36H6, C36H4O and C36H6O) which leads to milligram quan-
tities of C36H6. In the light of this new work, it seems timely to
make a systematic investigation of the likely structures of C36

hydrides and to identify factors affecting their stability. The
present paper reports a complete study of possible hydrides
C36H2x (x = 1, 2, 3) based on the low-energy fullerene cages.
Saturation of sites at pentagon adjacencies is seen to be a major
stabilising factor in the relative energetics of the derivatives.

2 Methods
2.1 Generation of isomers

The two fullerene cage isomers selected from the 15 possibilities
on energy grounds 4 are shown as polyhedral cages and Schlegel
diagrams in Fig. 1. Vertices were labelled in spiral order and
addition patterns C36H2x for each cage were constructed as the

�36

2x
�

binary sequences with 0 for a bare carbon and 1 for a hydrogen-
ated centre. Symmetry operations of the parent D2d and D6h

groups, expressed as vertex permutations, were then used to
reduce the set to single representatives of symmetry-distinct
isomers. Distinct isomers are conveniently labelled by listing the
set of functionalised positions in the vertex spiral order from
Fig. 1.

Fig. 1 C36 isomers 36 : 14 and 36 : 15 in Schlegel and conventional 3D
representations. The point group and the relative energy (in kJ mol�1,
DFTB method) are given in brackets. 36 : 15 has a maximum possible
symmetry of D6h which falls to C6v in optimisation as a result of
Jahn–Teller distortion.
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Table 1 Number of isomers generated by exhaustion (total), subsequent symmetry reduction (distinct), and removal of intrinsic radicals
(non-radical) for decorated cages C36Hx

36 : 14 36 : 15

x Total Distinct Non-radical Total Distinct Non-radical

2
4
6

630
58 905

1 947 793

90
7 461

243 985

90
7 317

221 665

630
58 905

1 947 793

41
2 608

82 123

41
2 553

74 549

Intrinsically radical structures (those where the hydrogen-
ation pattern leads to isolated bare carbon atoms or allylic
fragments and hence to an open-shell configuration in a simple
Hückel picture) were removed from the set. Table 1 gives the
numbers of the candidate isomers of each set.

2.2 Geometry optimisations and energy calculations

Energies were calculated using the parameterised DFTB (‘Den-
sity-Functional based Tight-Binding’) method 20,21 which has
been applied extensively to the prediction of relative energies
in fullerenes 4,22–25 and their addition compounds.16,26 Optimal
bare-cage structures available from previous work 4 were decor-
ated with radial 1.1 Å C–H bonds and then each isomeric
candidate C36H2x was fully optimised in Cartesian coordinates
using BFGS 27 update and a P-RFO 28 step; tight convergence
was generally reached within 50 steps, and the few recalcitrant
isomers were reoptimised from the starting geometry using the
BERNY technique.29 One optimisation takes about 40 s on an
IBM 375 MHz POWER/3 processor; ~300000 calculations
were performed with SP/2 supercomputer facilities in Exeter
and Geneva.

3 Results and discussion
3.1 Fullerene cages

Reported calculations on the relative stabilities of C36 carbon
cages include treatments of all 15 classical isomers 2 and several
more general trivalent polyhedral cages.4,8–10 Two members of
the classical set are distinguished graph theoretically by having
the lowest achievable number of 12 pentagon adjacencies,2

which is known indicator of stability in fullerene isomers.24

The different methods (semi-empirical,4,8 Hartree–Fock,8,9

hybrid 9,10 and DFT 4,30) find the isomer 36 : 14 to be of lowest
energy. This structure has a ‘tennis-ball’ topology with eight
hexagons arranged in orthogonal tetracene strips of four and
the twelve pentagons forming the ‘seam’. Its nearest competitor
in energy is 36 : 15, with two polar hexagons, two cycles of
pentagons, and an equatorial belt of six hexagons arranged in
maximal D6h symmetry. The energy separation between 36 : 14
and 36 : 15 is small in density-functional based calculations (18
kJ mol�1 LDA,4 0.0 eV GGA,30 14 kJ mol�1 hybrid,9 12 kJ
mol�1 DFTB 4) and much larger in Hartree–Fock like calcu-
lations (124 kJ mol�1 HF,9 134 kJ mol�1 SAM1,8 108 kJ mol�1

AM1,4 158 kJ mol�1 QCFF-PI 4). Isomer 36 : 15 has a small
gap in D6h symmetry and undergoes second-order Jahn–Teller
distortion to C6v

4 or lower 9 symmetry; open-shell states are
competitive with the closed-shell singlet, and even favoured
over it in some calculations.31 The next classical fullerene
isomer 36 : 9 has 13 pentagon adjacencies and is predicted by
several methods to lie 30–40 kJ mol�1 above 36 : 14.4,8,9 Only
the Hartree–Fock calculations in a 4-31G basis give a lower
relative energy 9 of 16 kJ mol�1, which may well be under-
estimated because of the small basis and the neglect of
correlation.

All non-classical fullerenes appear to be much less stable than
36 : 14 and 36 : 15. Support for the restriction of further con-
siderations to the two fullerene cages is given by calculated
thermal distributions,9 which are dominated by 36 : 14 and

36 : 15 for temperatures below 500 K, and still show these two
isomers as constituting 60% of the mixture at 5000 K.

3.2 C36H2

Isomers of C36H2 span ranges of 224 and 251 kJ mol�1 for
derivatives based on 36 : 14 and 36 : 15, respectively, according
to the DFTB model. The most stable C36H2 isomers identified
in the calculations are listed in Schlegel diagram form in Fig. 2.
In terms of absolute internal energy, the most stable dihydro
derivative is a Cs structure (7), constructed by 1,4 addition to
36 : 14. This is followed by a group of functionalised 36 : 15
cages with addition at pentagon–pentagon–hexagon (PPH)
sites, all within 10 kJ mol�1 according to DFTB. All isomers
based on 36 : 14 within the first 64 kJ mol�1 and on 36 : 15
within 83 kJ mol�1 have this PPH pattern of functionalisation.

3.3 C36H4

For C36H4 isomers the energy ranges are 382 and 444 kJ mol� 1

for derivatives of 36 : 14 and 36 : 15, respectively, and the two
molecules of lowest absolute internal energy now correspond to
repeated 1,4 additions to 36 : 15, with C2v and D2h symmetry
(Fig. 3). Both contain favoured C36H2 patterns. The best pattern
for addition of 4 hydrogens to 36 : 14 is predicted to be a C2

isomer with 1,4 hydrogenation of hexagons from the two
distinct tetracene chains.

3.4 C36H6

For C36H6 isomers the energy ranges are again larger (650 kJ
mol�1 for 36 : 14, 557 kJ mol� 1 for 36 : 15), and the energy
differences between the best isomers in each set is about twice
that of C36H4. The lowest energy is found for the D3h isomer
based on 36 : 15 (Fig. 4), with triple 1,4 addition, which has
been discussed extensively in previous work as an indication of
both the addition chemistry 4,16,17 of C36 and the likely coordin-
ation of the C36 monomer in ‘super-graphite’ and another

Fig. 2 Schlegel diagrams of the most stable C36H2 isomers within 30
kJ mol�1 of the most stable isomer 36 : 14H2 : 7,21, labelled by point
group and relative energy (in kJ mol�1).



J. Chem. Soc., Perkin Trans. 2, 2001, 487–490 489

hexagonal infinite lattice.13 Six is less clearly an obvious ‘val-
ence’ of the D2d C36 cage 36 : 14, and the isomer of lowest
energy based on this cage is of only C1 symmetry. Histograms
of energy distributions for C36H4 and C36H6 (Fig. 5) show
that once several hydrogen atoms have been added, both iso-
mer sets are settling into the expected Gaussian-like pattern.
The energy ranges (Fig. 6) suggest a trend in which the best
derivatives of the more symmetrical 36 : 15 cage provide the
globally best C36H2x candidates. This trend apparently sur-
vives in the limit of full hydrogenation: optimisations of the
15 fullerenes C36H36 show a much flatter distribution of
energy than for the fullerenes themselves with D6h C36H36

stabilised by 13 kJ mol�1 with respect to the D2d isomer based
on 36 : 14 (Table 2).

3.5 Stabilisation of pentagon adjacencies

When the results of this study are taken in conjunction with
a previous survey of all possible addition patterns C24H2x

(x = 1–12) on the smallest hexagon-containing fullerene, a
simple rule of thumb for addition to lower fullerenes can be
proposed: addition to a given lower fullerene will give the
greatest energy lowering if sites are occupied in the order
PPP > PPH > PHH > HHH, where the symbols denote the set
of three rings fused at a given site.

Fig. 3 Schlegel diagrams of the most stable C36H4 isomers. The point
group and the relative energy (in kJ mol�1) with respect to the isomer
of C36H4 based on 36 : 15 with addends in positions 7,11,20,24 are given
in brackets.

Lower fullerenes necessarily contain pentagon adjacencies,
which are sites of maximum strain, each pentagon–pentagon
bond introducing an energy penalty 24 of ~ 70 kJ mol�1. The
most stable isomers of a lower fullerene will have minimum
number of adjacencies; in higher fullerenes C60, Cn (n � 70),
this leads to the well-known isolated-pentagon rule. Triples of
fused pentagons are even more destabilising.32 Not only do PPP
and PPH sites act as points of instability in the fullerene, but
they are also sterically prepared for pyramidal sp3 hybridisation
in localised C–H bonds. The four PPP sites of Td C28 provide
an extreme example, accounting for the ‘tetravalence’ of this

Fig. 4 Schlegel diagrams of the most stable C36H6 isomers. The point
group and the relative energy (in kJ mol�1) with respect to the isomer of
C36H6 based on 36 : 15 with addends in positions 7,11,15,20,24,28 are
given in brackets.

Fig. 5 Histograms of C36H4 (left) and C36H6 isomers. The number of isomers in each window of 5 kJ mol�1 is plotted.
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fullerene ‘superatom’,33–35 but the same trend is discernible in
the results for C24.

26 In the two isomers of C36, PPP sites are
absent and addition takes place at PPH. Although energies
alone cannot be taken to imply a mechanism, the ‘nesting’
property in which stable C36H2 patterns appear as subsets of
stable C36H4 patterns, which in turn are present within the best
C36H6, is at least suggestive of a low-energy pathway for
multiple hydrogenation. Finally, we note that these calculations
have provided candidates for C36H2x structures formed by
hydrogenation of pre-existing C36 fullerene cages. Their
symmetry properties in particular should aid in the assignment
of the recently produced C36 fullerene hydrides.
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Fig. 6 Comparison of energy ranges of isomers based on 36 : 14
(dark) and 36 : 15 (light) fullerene cages. Energies are given in kJ mol�1

relative to the most stable isomer of each set, as calculated within the
DFTB model.

Table 2 Calculated energies of 15 conventional bare C36 cages 36 : N
(left) and the corresponding fully hydrogenated C36H36 molecules
(labelled by N). Energy values are in kJ mol�1 and reported relative to
the most stable isomer within each set of molecules

C36 C36H36

N E N E

14
15
12
9

11
8
6
7

13
10
3
1
4
5
2

0.0
11.6
41.8
43.3
72.7

118.4
153.6
166.8
173.1
204.8
248.3
330.1
332.3
415.1
467.0

15
14
9
6

12
11
13
8
1
3
2
7
4

10
5

0.0
13.3
14.6
15.8
17.8
18.2
19.8
20.3
20.5
24.3
36.6
37.7
42.6
57.1

116.2
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